佳學基因遺傳病基因檢測機構排名,三甲醫(yī)院的選擇

基因檢測就找佳學基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實現人人健康!
×
查病因,阻遺傳,哪里干?佳學基因正確有效服務好! 靶向用藥怎么搞,佳學基因測基因,優(yōu)化療效 風險基因哪里測,佳學基因
當前位置:????致電4001601189! > 檢測產品 > 遺傳病 > 神經科 >

【佳學基因檢測】精神病基因組協(xié)會如何解碼疾病發(fā)生的基因原因并應用基因檢測?

【佳學基因】精神病基因組協(xié)會如何解碼疾病發(fā)生的基因原因并應用基因檢測? 什么是影像表型? 利用英國生物銀行的大規(guī)模圖像數據和精神病基因組協(xié)會的大規(guī)模GWAS數據的方法有可能開啟對精神疾病生物學的許多洞察。在本文中,我們提出了一種這樣的方法,BrainXcan,它利用這兩種數據資源來解決小規(guī)模MRI研究中的一些不足。以英國生物銀行的數據為參考,我們建立了從基因

佳學基因檢測】精神病基因組協(xié)會如何解碼疾病發(fā)生的基因原因并應用基因檢測?


什么是影像表型?

利用英國生物銀行的大規(guī)模圖像數據和精神病基因組協(xié)會的大規(guī)模GWAS數據的方法有可能開啟對精神疾病生物學的許多洞察。在本文中,我們提出了一種這樣的方法,BrainXcan,它利用這兩種數據資源來解決小規(guī)模MRI研究中的一些不足。以英國生物銀行的數據為參考,我們建立了從基因數據預測大腦IDPs的模型。這些模型可以應用于全基因組關聯研究。例如,使用精神病基因組協(xié)會收集的精神分裂癥GWAS數據,我們的方法測試了精神分裂癥與許多不同功能、結構和擴散MR模式之間的關聯,大小為∼ 70000個案例和∼ 24萬個控件。此外,通過應用孟德爾隨機方法,我們推斷出因果關系的方向:IDP的變化是疾病的原因還是后果。
Methods that leverage UK Biobank’s large scale image data and the PGC’s large scale GWAS data have the potential to unlock many insights into the biology of mental disorders. In this paper we propose one such method, BrainXcan, which leverages these two data resources to address some of the deficiencies in small scale MRI studies. Using UK Biobank data as a reference, we build models to predict brain IDPs from genetic data. These models can then be applied to from genome-wide association studies. For example, using the schizophrenia GWAS data collected by the PGC, our method tests for association between schizophrenia and a number of different functional, structural and diffusion MR modalities with size of ∼ 70, 000 cases and ∼ 240, 000 controls. Furthermore, by applying a Mendelian randomization approach we infer the direction of causality: whether the changes in IDP are the cause of disease or a consequence of it.
影像表型(IDP)相關遺傳標記已被用于因果推斷,并采用孟德爾隨機法等方法,在大樣本量和防止反向因果關系的情況下,研究大腦特征對行為表型的中介作用。例如,Jansen等人(2020年)研究了腦容量IDP和智力之間共享的基因組位點和相應基因,他們確定了92個共享基因,為腦容量和智力的共享遺傳病因學提供了見解。Shen等人(2020年)對抑郁癥和dMRI IDPs進行了雙向MR分析,發(fā)現提示性證據表明丘腦輻射平均擴散率的變化可能是抑郁癥的后果。一種相關的方法是將遺傳預測的大腦IDP/表型與復雜性狀相關聯,這是基于轉錄組的方法(Gamazon等人,2015;Gusev等人,2016)對IDP的延伸?;谶@一想法,Knutson等人(2020年)利用阿爾茨海默病神經成像倡議的14個大腦特征開展了成像廣泛關聯研究(IWAS)。他們還使用標準PRS方法,使用Elliott等人(2018年)(n=8428)的GWAS匯總結果生成預測權重。
IDP-associated genetic markers have been used for causal inference with methods such as Mendelian Randomization to investigate the mediating role of brain features on behavioral phenotypes with both large sample sizes and protection from reverse causality. For instance, Jansen et al. (2020) studied the genomic loci and corresponding genes that are shared between brain volume IDPs and intelligence and they identified 92 shared genes which provided insight of the shared genetic etiology of brain volume and intelligence. Shen et al. (2020) performed bi-directional MR analysis with depression and dMRI IDPs finding suggestive evidence that the change of the mean diffusivity in thalamic radiations could be a consequence of major depressive disorder. A related approach is one that correlates genetically predicted brain IDP/phenotype and the complex trait, an extension of transcriptome-based methods (Gamazon et al., 2015Gusev et al., 2016) to IDPs. Based on this idea, Knutson et al. (2020) developed imaging-wide association study (IWAS) using 14 brain features from the Alzheimer’s Disease Neuroimaging Initiative. They also used standard PRS approaches to generate prediction weights using the GWAS summary results from Elliott et al. (2018) (n=8,428).
在本文中,我們對IDPs的遺傳結構進行了深入分析,并進一步處理英國生物銀行的IDPs,以開發(fā)一個最大化可解釋性、魯棒性、計算效率和用戶友好性的框架。
大腦特征的高度多基因性對現有方法提出了若干挑戰(zhàn),限制了檢測其與疾病的聯系的能力;孟德爾隨機化方法所需的強大遺傳工具很難識別。我們通過開發(fā)IDPs的多基因預測因子來應對這些挑戰(zhàn),這些預測因子由IDPs的復雜遺傳結構和相關結構提供信息。為了便于解釋結果,我們開發(fā)了區(qū)域特異性和全腦預測因子,提供了對潛在偏差的深入分析和量化。我們確保該實現在計算效率上是有效的,并且可擴展到全基因組生物庫規(guī)模的數據。我們開發(fā)了關聯方法的擴展,該方法可以使用日益可用的GWAS匯總結果推斷關聯,即不需要使用單個級別的數據。我們添加了一個孟德爾隨機模型來估計因果流的方向。我們通過將其應用于44種人類特征來說明該方法的威力。最后,我們提供了軟件、推薦管道和自動化報告,以提高可用性,降低不太熟悉基因研究的用戶采用的障礙。


In this paper, we perform an in-depth analysis of the genetic architecture of IDPs and further process UK Biobank’s IDPs to develop a framework that maximizes interpretability, robustness, computational efficiency, and user friendliness.

The high polygenicity of brain features imposes several challenges to existing methods limiting the power to detect their link to diseases; strong genetic instruments needed for Mendelian randomization based approaches are difficult to identify. We address these challenges by developing polygenic predictors of IDPs informed by their complex genetic architecture and correlation structure. To facilitate interpretation of the results, we develop region-specific and brain-wide predictors providing an in-depth analysis and quantification of potential biases. We make sure that the implementation is computationally efficient and scalable to genome-wide Biobank-scale data. We develop an extension of the association method that can infer the association using the increasingly available GWAS summary results, i.e. without the need to use individual level data. We add a Mendelian Randomization module to estimate the direction of the causal flow. We illustrate the power of the approach by applying it to 44 human traits. Finally, we provide the software, the recommended pipeline, and automated reports to improve usability and lower the barrier to adoption for users less familiar with genetic studies.

(責任編輯:佳學基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內容:
來了,就說兩句!
請自覺遵守互聯網相關的政策法規(guī),嚴禁發(fā)布色情、暴力、反動的言論。
評價:
表情:
用戶名: 驗證碼: 點擊我更換圖片

Copyright © 2013-2033 網站由佳學基因醫(yī)學技術(北京)有限公司,湖北佳學基因醫(yī)學檢驗實驗室有限公司所有 京ICP備16057506號-1;鄂ICP備2021017120號-1

設計制作 基因解碼基因檢測信息技術部